On bijections between monotone rooted trees and the comb basis

نویسنده

  • Fu Liu
چکیده

Let A be an n-element set. Let L ie2(A) be the multilinear part of the free Lie algebra on A with a pair of compatible Lie brackets, and L ie2(A, i) the subspace of L ie2(A) generated by all the monomials in L ie2(A) with i brackets of one type. The author and Dotsenko-Khoroshkin show that the dimension of L ie2(A, i) is the size of RA,i, the set of rooted trees on A with i decreasing edges. There are three families of bases known for L ie2(A, i) ∶ the comb basis, the Lyndon basis, and the Liu-Lyndon basis. Recently, González D’León and Wachs, in their study of (co)homology of the poset of weighted partitions (which has close connection to L ie2(A, i)), asked whether there are nice bijections between RA,i and the comb basis or the Lyndon basis. We give a natural definition for ”nice bijections”, and conjecture that there is a unique nice bijection betweenRA,i and the comb basis. We show the conjecture is true for the extreme cases where i = 0, n − 1. Résumé. Soit A un ensemble à n éléments. Soit L ie2(A) la partie multilinéaire de l’algèbre de Lie libre sur A avec une paire de crochets de Lie compatibles et L ie2(A, i) le sous-espace de L ie2(A) généré par tous les monômes en L ie2(A) avec i supports d’un même type. L’auteur et Dotsenko-Khoroshkin montrent que la dimension de L ie2(A, i) est la taille de la RA,i, l’ensemble des arbres enracinés sur A avec i arêtes décroissantes. Il y a trois familles de bases connues pour L ie2(A, i) : la base de peigne, la base Lyndon, et la base Liu-Lyndon. Récemment, Gonzalez, D’ Léon et Wachs, dans leur étude de (co)-homologie de la poset des partitions pondérés, ont demandé si il y a des bijections jolies entre RA,i, et la base de peigne ou la base Lyndon. Nous donnons une définition naturelle de “bijection jolie”, et un conjecture qu’il y a une seule bijection jolie entre RA,i, et la base de peigne. Nous montrons que la conjecture est vraie pour les cas extrêmes: i = 0, et n − 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A family of bijections between G-parking functions and spanning trees

For a directed graph G on vertices {0, 1, . . . , n}, a G-parking function is an n-tuple (b1, . . . , bn) of non-negative integers such that, for every non-empty subset U ⊆ {1, . . . , n}, there exists a vertex j ∈ U for which there are more than bj edges going from j to G−U . We construct a family of bijective maps between the set PG of G-parking functions and the set TG of spanning trees of G...

متن کامل

New bijective links on planar maps via orientations

This article presents new bijections on planar maps. At first a bijection is established between bipolar orientations on planar maps and specific “transversal structures” on triangulations of the 4-gon with no separating 3-cycle, which are called irreducible triangulations. This bijection specializes to a bijection between rooted non-separable maps and rooted irreducible triangulations. This yi...

متن کامل

Bijections for Cayley trees, spanning trees, and their q-analogues

We construct a family of extremely simple bijections that yield Cayley’s famous formula for counting trees. The weight preserving properties of these bijections furnish a number of multivariate generating functions for weighted Cayley trees. Essentially the same idea is used to derive bijective proofs and q-analogues for the number of spanning trees of other graphs, including the complete bipar...

متن کامل

Bijections for 2-plane trees and ternary trees

According to the Fibonacci number which is studied by Prodinger et al., we introduce the 2-plane tree which is a planted plane tree with each of its vertices colored with one of two colors and qqppppppppppppppppp -free. The similarity of the enumeration between 2-plane trees and ternary trees leads us to build several bijections. Especially, we found a bijection between the set of 2-plane trees...

متن کامل

Bijections for a class of labeled plane trees

We consider plane trees whose vertices are given labels from the set {1, 2, . . . , k} in such a way that the sum of the labels along any edge is at most k + 1; it turns out that the enumeration of these trees leads to a generalization of the Catalan numbers. We also provide bijections between this class of trees and (k + 1)-ary trees as well as generalized Dyck paths whose step sizes are k (up...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015